TORTHUMBERLAND ASTRONOMICAL SOCIETY

Measuring

 the Crab Nebula (Messier 1)Dr Paul Lewis ERAS

NASA, ESA and Allison Loll/Jeff Hester (Arizona State University). Acknowledgement: 'Davide De Martin (ESA/Hubble) .

What is it?

\& Expanding remnant of supernova \star Reported by Chinese on 4th July, 1054 \star Apparent magnitude: +8.4

* Distance: 6,500 light years (2,000 parsecs)
放Stellar remnant is pulsar + Neutron star that emits rapid and periodic pulses of radiation \leftarrow Period 0.033 seconds \star Rotates 30 times a second

In 1844 Lord Rosse published in the Philosophical Transactions a drawing made with his giant 72-inch reflector.

Different Wavelengths

X-RAY .

- OPTICAL

INFRARED
RADIO

Scientific approach

\square

Objectives

1. Calculate age of nebula

* Use the rate of expansion of the nebula by measuring the outward drift (proper motion)

2. Derive a distance to the nebula

* Use the 'expansion parallax' method, which requires the radial velocities of the knots

3. Absolute magnitude
$*$ Use the value for the distance to derive the absolute magnitude of the supernova

Objectives

1. Calculate age of nebula

* Use the rate of expansion of the nebula by measuring the outward drift (proper motion)

2. Derive a distance to the nebula

* Use the 'expansion parallax' method, which requires the radial velocities of the knots

3. Absolute magnitude * Use the value for the distance to derive the absolute magnitude of the supernova :

Blink comparison

1973
2000
\star Period: $\nleftarrow 0: 25$ seconds . ${ }^{2}$ Check: + Stars \cdots Knots +P Pulsar

Image scale

A and B are 385 arcseconds apart Image Scale $=\frac{\text { Angular separation }(\operatorname{arcsecs})}{\text { Linear separation }(\mathrm{mm})}$

Star AB	Inner mm	Outer mm	Average mm	Image scale arcsec/mm	Plate scale arcsec/mm
1973	160.2	162.8	161.5	2.384	2.38 approx
2000	160.5	162.7	161.6	2.382	

Pulsar position

\star Use set square

+ Construct lines parallel to edge \&Passing through pulsar centre *Measure $x_{\text {pulsar }}$ and $y_{\text {pulsar }}$ using ruler \star A check that pulsar correctly identified

Pulsar Position

Year

$\boldsymbol{x}_{\text {pulsar }}$	$y_{\text {pulsar }}$
$\mathbf{m m}$	mm

$1973 \quad 71.3 \quad 87.2$

| 2000 | 71.2 | 86.9 |
| :--- | :--- | :--- | :--- |

Comparison stars

\& Check on precision of measurements * Same technique as image scale \star Measure from pulsar * Choose stars to cover most part of image \star Include A and B * Include stars within image of nebula \star Fainter stars

+ Smaller images
\& Cleaner and easier to measure

Comparison stars

Angular Distance $(\operatorname{arcsec})=$
Image Scale $($ arcsec $/ \mathrm{mm}) \times$ Image Distance (mm)
Shift $=$ Angular Distance (2000) - Angular Distance (1973)

Stars	Shift (arcsecs)	Stars	Shift (arcsecs)
A	-0.34	G	-0.08
B	0.46	H	-0.79
C	0.28	I	-0.07
D	-0.63	J	1.25
E	-0.01	L	0.12
F	-0.43	M	0.26
Shift average			0.002 arcsecs
Shift standard deviation		0.545 arcsecs	

Comparison stars

$\underset{\star}{\star}$ Most values well under 1 arcsecond * No systematic movement of the stars between the two epochs
*Standard deviation suggests uncertainty in technique is about 0.5 arcseconds

Knots

, Measure from pulsar \star Difficulty in identifying the same part of knot on each image
\& Tend to change shape *Uncertainty larger than for stars

Calculations

*Shifts in knot position Δx (arcsecs)
*Use image scale
*Calculate angular separation from pulsar
$\Delta x=x 2000-x 1973$
*Proper motion μ (arcsecs/year)
$\mu=\frac{\Delta x}{\Delta t}$ where $\Delta t=2000-1973=27$
*Conversion time T (years)
*Time taken to travel from pulsar
\leftrightarrow Assume current proper motion constant ${ }^{9}$

$$
T=x 2000 / \mu
$$

Separation of knots relative to pulsar

Knot	$x 1973$ (arcsecs)	$x 2000$ (arcsecs)
1	117.5	121.5
2	93.2	96.7
3	64.7	68.5
4	107.0	111.5
5	99.8	105.3
6	71.4	73.9
7	38.1	41.0
8	99.1	101.7
9	120.9	123.5
10	150.5	156.4

Separation of knots relative to pulsar

Knot	Shift Δx (arcsecs)	Proper motion μ (arcsecs/year)
1	3.98	0.147
2	3.52	0.130
3	3.77	0.140
4	4.46	0.165
5	5.54	0.205
6	2.45	0.091
7	2.84	0.106
8	2.68	0.099
9	2.66	0.099
10	5.86	0.217

Knot

1

2	743
3	490
4	675
5	513
6	811
7	390
8	1025
9	1252
10	720

* Time taken for each knot to travel from pulsar to position in year 2000
* Minimum time: * 390 years
, Maximum time: * 1252 years
* Average time: * 745 years
* Standard deviation: * 257 years

Date of
 supernova

* Best estimate date: $+2000-745$
* Calculated date: +1255 AD
\star Historical date:
\&1054 AD

Hubble Space Telescope image of a small region of the Crab Nebula Credit: NASA/ESA

Discussion

* Great variation in knot proper motion
* Measurement error quite large
* Unlikely more or better measurements would change result

* Therefore ejecta speed must be greater now than in the past
\& If travelling slower, take longer to reach present position

Ejecta speed

\downarrow Ejecta colliding with interstellar medium or debris from previous mass ejections
\& Expected to slow down
\star To speed up
\& Must be some form of active acceleration
„ Current explanation by Virginia Trimble: 1968
$\$$ Electrons are accelerated in the magnetic field of the pulsar
*Emit synchrotron radiation *Pressure from synchrotron nebula accelerates the knots

Synchrotron Radiation

Synchrotron radiation is electromagnetic radiation generated by a synchrotron (particle accelerator) $\underset{}{ }$ It is generated by the acceleration of ultrarelativistic (i.e. moving near the speed of
light) charged particles through magnetic fields \star The radiation produced may range over the entire electromagnetic spectrum

Objectives

1. Calculate age of nebula
\& Use the rate of expansion of the nebula by measuring the outward drift (proper motion)
2. Derive a distance to the nebula
\& Use the 'expansion parallax' method, which requires the radial velocities of the knots
3. Absolute magnitude

* Use the value for the distance to derive the absolute magnitude of the supernova

Expansion parallax

Distance, d

$$
d(\text { parsec })=\frac{v(\mathrm{~km} / \mathrm{s})}{4.74 \times \mu(\operatorname{arcsec} / \mathrm{year})}
$$

The spectrum of the Crab nebula, obtained at Lick Observatory by N. U.
Mayall with the Crossley reflector. The Mayall with the Crossley reflector. The spectrograph slit was aligned with the
major axis of the nebula (here vertical), to record velocity differences along that axis. These are best shown by the necklace shape of the 3727 -angstrom oxygen line. A laboratory spectrum of palladium, tin, and lead flanks that of
the Crab to give a wavelength scale; nebular lines are identified at bottom.

Spectrum

* Emission spectrum
* Negative image
\star Slit aligned with Crab major axis
* Laboratory spectra (palladium, tin, lead)
372.7 nm ionised oxygen 'necklace'
\star Red and blue shift
* Nebular lines along bottom

Emission lines

The spectrum of the Crab nebula, obtained at Lick Observatory by N. U. Mayall with the Crossley reflector. The spectrograph slit was aligned with the major axis of the nebula (here vertical), to record velocity differences along that axis. These are best shown by the necklace shape of the 3727 -angstrom oxygen line. A laboratory spectrum of palladium, tin, and lead flanks that of the Crab to give a wavelength scale; nebular lines are identified at bottom.

Oxygen line \star Most conspicuous emission feature * Either red or blue shifted

* Filaments either front or far side * Lie on outer edges of nebula * Envelope with continuous synchrotron radiation inside

Dispersion

$$
\Delta \lambda=379.9-369.0
$$

$=10.9 \mathrm{~nm}$
Dispersion $=\frac{\Delta \lambda}{d_{p a l}}$
The spectrum of the Crab nebula, obtained at Lick Observatory by N. U. Mayall with the Crossley reflector. The spectrograph slit was aligned with the major axis of the nebula (here vertical), to record velocity differences along that axis. These are best shown by the necklace shape of the 3727 -angstrom oxygen line. A laboratory spectrum of palladium, tin, and lead flanks that of

$$
\frac{10.9}{11.6}=0.940 \mathrm{~nm} / \mathrm{n}
$$

Measurement of Oll line

* Not equally bright in all places
*Formed by images of individual knots
\star Line drawn through centre of most red and blue shift * Maximums in different positions

$$
d_{\text {neck }}=3.8 \mathrm{~mm}
$$

Radial velocity

moving toward you: blueshift

moving away from you: redshift

$\frac{\text { Change in wavelength }}{\text { Rest wavelength }} \times$ Speed of light

$$
v=\frac{\Delta \lambda}{\lambda_{0}} c \mathrm{~km} / \mathrm{s}
$$

Wavelength separation, $\Delta \lambda$
$\Delta \lambda=d_{\text {neck }} \times$ Dispersion

$$
\begin{gathered}
\Delta \lambda=3.8 \times 0.94=3.57 \mathrm{~nm} \\
\text { Radial velocity, } v
\end{gathered}
$$

$v=\frac{\Delta \lambda}{\lambda_{0}} c$
$v=\left(\frac{3.57}{372.7}\right) \times 300,000=2870 \mathrm{~km} / \mathrm{s}$
$v_{\text {pulsar }}=(2870 \div 2)=1435 \mathrm{~km} / \mathrm{s}$

Distance, d

Observer
$d($ parsec $)=\frac{v(\mathrm{~km} / \mathrm{s})}{4.74 \times \mu(\operatorname{arcsec} / \mathrm{year})}$
$d=\frac{1435}{4.74 \times 0.140}=2160 \mathrm{pc}$
(μ is average angular ve locityof knots
from 'age' calculations)

Comparison

* Accepted value: 2000 pc * Calculated value: 2160 pc * Use knots more selectively?
*Assumed radial velocity equal to average \star True if spherical
* Nebula not spherical *What shape is it?

*Oblate spheroid
*Polar axis shorter tha, the equatorial diameter + Smarties, M\&M's Carth (slightly) \pm Prolate spheroid
*Polar axis greater than the equatorial diameter \&Rugby ball shaped
* Highest radial velocities will underestimate speeds at end of major axis
$\not \approx$ Correspond to lower speeds at ends of minor axis

Choice of knots

, Radial velocity
\& Using ends of minor axis

* Proper motion
\& Use knots at end of the minor axis
*Ignore other knots
* Distance gives 2632 pc
$\frac{\Delta}{\star}$ Not consistent with accepted value of 2000 pc \star Depends on which knots are used
$\$$ Due to lack of spherical symmetry

Objectives

1. Calculate age of nebula
\nLeftarrow Use the rate of expansion of the nebula by measuring the outward drift (proper motion)
2. Derive a distance to the nebula
\& Use the 'expansion parallax' method, which requires the radial velocities of the knots
3. Absolute magnitude
\& Use the value for the distance to derive the absolute magnitude of the supernova

Magnitude

* Apparent magnitude, m_{v}
*Brightness as seen
*Depends on brightness, distance, dust +Sun: -26.74
* Absolute magnitude, M_{v} *Brightness at 10 pc (32.6 light years) +Sun: +4.83

Absolute magnitude

ネ Apparent magnitude at peak： $\boldsymbol{m}_{\mathrm{v}}=-4.0$㸚 Distance：$\quad \boldsymbol{d}=2000 \mathrm{pc}$ ＊Extinction from dust：

$$
A_{\mathrm{v}}=3.0
$$

$$
\begin{aligned}
& M_{v}=m_{v}-5 \log d+5-A_{v} \\
& M_{v}=-4.0-5 \log 2000+5-3.0
\end{aligned}
$$

$$
M_{v}=-18.5
$$

效Type II supernova，typically $M_{\mathrm{v}}=-16.5$

Magnitudes

放 Difference between 2 magnitudes is 2.512

1st magnitude	2nd magnitude	Difference in magnitudes	Brightness difference
6	5	1	$2.512^{1} \approx 2.5$
6	4	2	$2.512^{2} \approx 6$
6	3	3	$2.512^{3} \approx 16$
6	2	4	$2.512^{4} \approx 40$
6	1	5	$2.512^{5} \approx 100$
6	0	6	$2.512^{6} \approx 250$
6	-1	7	$2.512^{7} \approx 630$

\star Absolute magnitude of Sun $=4.83$ * Absolute magnitude of Crab Nebula $=-18.5$
\star Difference in magnitude $=4.83-(-18.5) \approx 23.3$

$$
2.512^{23.3}=2 \text { billion }
$$

$\left(2.512^{23}=1.5\right.$ billion, $2.512^{24}=4$ billion $)$
Absolute magnitude of the Crab Nebula supernova was about 2 billion times brighter than the absolute magnitude of the Sun

Conclusions

1. Calculate age of nebula

* Shows expansion driven by radiation

2. Derive a distance to the nebula
\& Depends on data used
3. Absolute magnitude

* Explains why seen during day

